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1 Introduction and the yield functions

Tensile, or Rankine, plasticity is designed to simulate a material that fails when themaximum
principal stress exceeds the material’s tensile strength. Its yield function is therefore

f = σmax−T , (1.1)

whereσmax is the maximum1 principal stress (the largest eigenvalue of the stress tensor) andT
is the tensile strength.

One yield function is sufficient because of the definitionσmin ≤ σmid ≤ σmax. For instance,
if during the return-map process bothσmid and σmax exceedT the corresponding admissible
configuration is that both of them are equal toT . While one yield function is sufficient, it is
convenient to use three yield functions in total:

f0 = σmax−T ,

f1 = σmid−T ,

f2 = σmin−T . (1.2)

This is the version used byTensileStressUpdate. These yield functions have been ordered so
that the smoothing creates a surface that is perpendicular to theσmax = σmid plane, and that any
trial stress withσmid = σmin has an admissible returned stress.

Similar remarks hold for compressive plasticity. It yield functions are

f3 = −σmin−Tc ,

f4 = −σmid−Tc ,

f5 = −σmax−Tc . (1.3)

HereTc is the compressive strength, which is positive for real-world materials, andmust always
satisfyTc > −T , otherwise there is no admissible region.

Mohr-Coulomb plasticity simulates a material that undergoes shear failure if theshear stress
exceeds a linear function of the compressive stress. Its yield functions are

f6 = 1
2(σmax−σmin)+ 1

2(σmax+σmin)sinφ−C cosφ ,

f7 = 1
2(σmid−σmin)+ 1

2(σmid +σmin)sinφ−C cosφ ,

f8 = 1
2(σmax−σmid)+ 1

2(σmax+σmid)sinφ−C cosφ ,

f9 = 1
2(σmid−σmax)+ 1

2(σmid +σmax)sinφ−C cosφ ,

f10 = 1
2(σmin−σmid)+ 1

2(σmin +σmid)sinφ−C cosφ ,

f11 = 1
2(σmin−σmax)+ 1

2(σmin +σmax)sinφ−C cosφ . (1.4)

1Often the maximum principal stress is denoted byσmin. The code uses thedsymmetricEigenvalues method of
RankTwoTensor and this orders the eigenvalues from smallest to greatest.
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HereC is the cohesion andφ is the friction angle. Once again, the yield functions have been
ordered optimally.

Equations (1.2), (1.3) and (1.4) define the yield functions of Capped Mohr Coulomb plasticity.
The return-map algorithm first rotatesσ from the physical frame to the principal-stress frame

(whereσ = diag(σmin,σmid,σmax)). The rotation matrices used are assumed not to change during
the return-map process: onlyσmin, σmid andσmaxchange. Therefore, at the end of the return-map
process these rotation matrices may be used to find the final stress in the physical frame.

The 12 yield functions are smoothed using the method encoded inMultiParameterPlasticityStressUpdate.
An example is shown Figures 1.1 and 1.2. Figure 1.2 shows slices of the yield surface at various
values of the mean stress (that is, on various octahedral planes), and the hexagonal-pyramid and
triangular-pyramid nature of the yield surface is evident. The slices taken near the tip and the
base highlight: (1) the smoothing; (2) that the smoothing is unsymmetric.

The unsymmetric nature of the yield surface only occurs near the tip and base region where the
smoothing mixes the three yield surfaces. For instance, the black line in Figure1.2 is symmetric,
while the red lines are unsymmetric. The amount of asymmetry is small, but it is evident that
the red curve is not concentric with the remainder of the curves shown in Figure 1.2. The order
of the yield functions in Eqn (1.2), (1.3) and (1.4) have been chosen so that: at the tip the curves
intersect theσmax = σmid line at 90◦, but not on theσmid = σmin line; at the base the curves
intersect theσmid = σmin line at 90◦, but not on theσmax = σmid line. The asymmetry does not
affect MOOSE’s convergence, and of course it is physically irrelevant (since there is no one
“correct” smoothed yield surface).

Figure 1.1: Left: the unsmoothed yield surface of capped Mohr-Coulomb plasticity, which is a
hexagonal pyramid, capped with a trianglar pyramid at its tip and base (the base is not visible in
this picture). Right: a smoothed version. The principal stress directions are shown with black
lines, and the mean stress direction is shown with a blue line. In these picturesC = 3, φ = 30◦,
T = 0.4, Tc = 0.7, and the smoothing solerance is 0.2.
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Figure 1.2: Slices of the unsmoothed and smoothed yield functions at variousvalue of mean
stress. The viewer is looking along the line of increasing mean stress in thesefigures. Left:
the orange lines show the Mohr-Coulomb hexagon; the black lines show this being truncated by
the tensile tip; blue lines show the tensile triangle; red lines show the yield surface near the tip.
Right: the similar situation near the compressive base. The whole octahedralplane is shown in
this figure, but only one sextant is physical, which is indicated by the solid green lines. In this
figureIII representsσmax, II representsσmid andI representsσmin.
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2 Flow rules and hardening

The flow potentials for the tensile and compressive parts are associative,while the flow potentials
for the Mohr-Coulomb parts are nonassociative. The flow potentials are:

g0 = σmax−T ,

g1 = σmid−T ,

g2 = σmin−T ,

g3 = −σmin−Tc ,

g4 = −σmid−Tc ,

g5 = −σmax−Tc ,

g6 = 1
2(σmax−σmin)+ 1

2(σmax+σmin)sinψ−C cosψ ,

g7 = 1
2(σmid−σmin)+ 1

2(σmid +σmin)sinψ−C cosψ ,

g8 = 1
2(σmax−σmid)+ 1

2(σmax+σmid)sinψ−C cosψ ,

g9 = 1
2(σmid−σmax)+ 1

2(σmid +σmax)sinψ−C cosψ ,

g10 = 1
2(σmin−σmid)+ 1

2(σmin +σmid)sinψ−C cosψ ,

g11 = 1
2(σmin−σmax)+ 1

2(σmin +σmax)sinψ−C cosψ . (2.1)

Hereψ is the dilation angle.
The flow rules are

sa = strial
a − γEab

∂g
∂sa

, (2.2)

wheresa = {σmin,σmid,σmax} and

Eab =
∂sa

∂σi j
Ei jkl

∂sb

∂σkl
. (2.3)

In this equationEi jkl is the elasticity tensor.
An assumption that is made inMultiParameterPlasticityStressUpdate is that Eab is

independent of the stress parameters,sa and the internal variables. In this case1

∂sa

∂σi j
= va

i va
j , (2.4)

whereva is the eigenvector corresponding to the eigenvaluesa (of the stress tensor) and there is
no sum overa on the right-hand side. Recall that the eigenvectors are fixed during the return-map
process, so the RHS is fixed, meaning thatEab is indeed independent of the stress parameters.

1Special precautions are taken when the eigenvalues are equal, as described inRankTwoTensor.
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Also recall that the eigenvectors induce a rotation (to the principal-stress frame), so assuming
thatEi jkl is isotropic

Eab = Eaabb . (2.5)

The assumption of isotropy is appropriate for this type of isotropic plasticity.
It is assumed that there are two internal parameters. Note that the definition of internal

parameters is motivated by thought experiments or by real experiments, andas such, the fol-
lowing definitions might not suit your needs. It is a small job to produce a newversion of
CappedMohrCoulomb that incorporates different internal parameters.

The “shear” internal parameter isi0, while the “tensile” internal parameter isi1. It is assumed
that

C = C(i0) ,

φ = φ(i0) ,

ψ = ψ(i0) ,

T = T (i1) ,

Tc = Tc(i1) . (2.6)

The evolution ofi0 andi1 is motivated by first considering a pure shear failure. I would likei1
to be unchanged in pure shear. A pure shear failure implies

0 = f = 1
2(σmax−σmin)+ 1

2(σmax+σmin)sinφ−C cosφ ,

σmax = σtrial
max− γshearE22(

1
2 + 1

2 sinψ)− γshearE20(−
1
2 + 1

2 sinψ) ,

σmin = σtrial
min − γshearE00(−

1
2 + 1

2 sinψ)− γshearE02(
1
2 + 1

2 sinψ) . (2.7)

The first equation is the yield function and the other equations are the flow rules. Combining the
last 2 equations yields

γshear=
(σtrial

max−σtrial
min)− (σmax−σmin)

E22−E20
(2.8)

It is assumed that the shear internal parameter evolves according to

i0 = iold
0 + γshear. (2.9)

Finally, before considering the tensile failure, note that the equations imply

(σtrial
max+σtrial

min)− (σmax+σmin) = γshear(E22+E20)sinψ . (2.10)

Now consider a pure tensile failure. The equations to solve are

0 = f = σmax−T ,

σmax = σtrial
max− γtensileE22 . (2.11)

The flow rule forσmin is σmin = σtrial
min−γtensileE20 = σtrial

min−γtensile
ν

1−ν E22, whereν is the Poisson’s
ratio. Solving these equations yields

γtensile=
σtrial

max−σmax

E22
= (1−ν)

(σtrial
max+σtrial

min)− (σmax+σmin)

E22
. (2.12)
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The final expression is used. To motivate this, consider a pure compressive failure. The equa-
tions to solve are

0 = f = −σmin−Tc ,

σmin = σtrial
min + γcompressiveE00 . (2.13)

The flow rule forσmax is σmax= σtrial
max+γcompressive

ν
1−ν E00, whereν is the Poisson’s ratio. Solving

these equations yields

γcompressive= −(1−ν)
(σtrial

max+σtrial
min)− (σmax+σmin)

E00
. (2.14)

Note thatγcompressive= −γtensile. This means that when these expressions for the plastic mul-
tipliers are used a compressive failure following a tensile failure can causethe tensile internal
parameter to reduce, which is physically appealing.

The evolution of the tensile internal parameter is assumed to obey

i1 = iold
1 +(1−ν)

(σtrial
max+σtrial

min)− (σmax+σmin)− γshear(E22+E20)sinψ
E22

. (2.15)

The reason for the final term involvingγshearis to ensure that no increment of the tensile internal
parameter occurs during pure shear failure — see Eqn (2.10). However, the above definitions
mean that during pure tensile failure, the shear internal parameter will change.
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3 Technical discussions

3.1 Unknowns and the convergence criterion

The return-map problem involves solving the four equations:f = 0 (smoothed yield function
should be zero) and the flow equations (2.2). The unknowns are the 3 stress parameterssa =
{σmin,σmid,σmax} and the plasticity multiplierγ. Actually, to make the units consistent the
algorithm usesγE22 instead of simplyγ. Convergence is deemed to be achieved when the sum
of squares of the residuals of these 4 equations is less than a user-defined tolerance.

3.2 Iterative procedure and initial guesses

A Newton-Raphson process is used, along with a cubic line-search. Theprocess may be ini-
tialised with the solution that is correct for perfect plasticity (no hardening)and no smoothing, if
the user desires. Smoothing adds nonlinearities, so this initial guess will not always be the exact
answer. For hardening, it is not always advantageous to initialise the Newton-Raphson process
in this way, as the yield surfaces can move dramatically during the return process.

3.3 Substepping the strain increments

Because of the difficulties encountered during the Newton-Raphson process during rapidly hard-
ening/softening moduli, it is possible to subdivide the applied strain increment,δε, into smaller
substeps, and do multiple return-map processes. The final returned configuration may then be
dependent on the number of substeps. While this is simply illustrating the non-uniqueness of
plasticity problems, in my experience it does adversely affect MOOSE’s nonlinear convergence
as some Residual calculations will take more substeps than other Residual calculations: in effect
this is reducing the accuracy of the Jacobian.

3.4 The consistent tangent operator

MOOSE’s Jacobian depends on the derivative

Hi jkl =
δσi j

δεkl
. (3.1)

The quantityH is called the consistent tangent operator. For pure elasticity it is simply the elastic
tensor,E, but it is more complicated for plasticity. Note that a smallδεkl simply changesδσtrial,
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soH is capturing the change of the returned stress (δσ) with respect to a change in the trial stress
(δσtrial). In formulae:

Hi jkl =
δσi j

δσtrial
mn

δσtrial
mn

δεkl
=

δσi j

δσtrial
mn

Emnkl . (3.2)

In the case at hand,
σi j = ∑

a
RiasaRT

a j . (3.3)

In this formulaσi j is the returned stress,sa are the returned stress parameters (eigenvalues), and
R is the rotation matrix, defined through the eigenvectors,va (a = 1,2,3) of the trial stress:

Ria = va
i . (3.4)

The three eigenvectors remain unchanged during the return-map process. However, of course
they change under a change inσtrial. The relevant formulae are

δstrial
a

δσtrial
kl

= va
i va

j , (3.5)

δva
i

δσtrial
kl

= ∑
b 6=a

vb
i (v

b
kva

l + vb
l va

k)

2(sa − sb)
. (3.6)

On the RHS of these equations there is no sum overa.
The final piece of information is

δsb

δstrial
a

. (3.7)

MultiParameterPlasticityStressUpdate computes this after each Newton step, for any
aribtrary plasticity model.

The nontrivial part to the consistent tangent operator is therefore

δσi j

δσtrial
mn

= ∑
a

δRia

δσtrial
mn

saRT
a j +∑

a
∑
b

Ria
δsa

δstrial
b

δstrial
b

δσtrial
mn

RT
a j +∑

a
Riasa

δRT
a j

δσtrial
mn

. (3.8)

All the components of this equation have been provided above.

3.5 Cosserat version

A Cosserat version of capped Mohr-Coulomb plasticity is available. It assumes a “host” non-
Cosserat isotropic elasticity tensor exists, and this is employed in the return-map algorithm.
The unsymmetric parts of the stress tensor and the moment-stress tensor do not enter into the
plasticity theory, so they are unaffected during plastic deformation.
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4 Tests

The test suite consists of many tests ofCappedMohrCoulombStressUpdate. This Chapter de-
scribes a few of these.

4.1 The tensile yield surface

Consider the tip of the tensile yield surface shown in Figure 4.1. Repeated deformations may
be applied to a single element in order to cause tensile failure, and by recording the returned
stresses, the yield surface may be mapped out. Figure 4.1 shows that MOOSE produces the
expected result. The tests aresmall deform5, small deform6 andsmall deform7.
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MOOSE (Smin=0
expected (Smid = Smin)
MOOSE (Smid approx Smin)
expected (Smax = Smid)
MOOSE (Smax = Smid)

Figure 4.1: The tip of the tensile yield surface. This surface hasT = 1 and the smoothing
parameter is 0.5. The principal stress axes are shown in black (σmax), dark green (σmid) and
light green (σmin). The wedge-shaped region defined by the planes is the physical region where
σmax≥σmid ≥σmin. The blue plane isσmid = σmin, which is a Lode angle of−30◦. The red plane
is σmax = σmid, which is a Lode angle of 30◦. The black curve hasσmin = 0. The right figure
shows plots of the yield surface along these curves (with the same colour scheme) demonstrating
that MOOSE produces the expected result. There is a tiny discrepancy in the blue (σmid = σmin)
result: this is because the deformations applied in the test only produce the approximate result
σmid ≈ σmin, so the MOOSE results don’t lie exactly on the blue plane, but slightly off it.
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4.2 The compressive yield surface

Consider the tip of the compressive yield surface shown in Figure 4.2. Repeated deformations
may be applied to a single element in order to cause compressive failure, andby recording the
returned stresses, the yield surface may be mapped out. Figure 4.2 showsthat MOOSE produces
the expected result. The tests aresmall deform15, small deform16 andsmall deform17.
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Figure 4.2: The tip of the compressive yield surface (this view has oppositeorientation to Fig-
ure 4.2). This surface hasTc = 1 and the smoothing parameter is 0.5. The wedge-shaped re-
gion defined by the planes is the physical region whereσmax≥ σmid ≥ σmin. The blue plane is
σmid = σmin, which is a Lode angle of−30◦. The red plane isσmax= σmid, which is a Lode angle
of 30◦. The black curve hasσmax = 0. The right figure shows plots of the yield surface along
these curves (with the same colour scheme) demonstrating that MOOSE produces the expected
result. There is a tiny discrepancy in the red (σmax = σmid) result: this is because the deforma-
tions applied in the test only produce the approximate resultσmax≈ σmid, so the MOOSE results
don’t lie exactly on the blue plane, but slightly off it.

4.3 The Mohr-Coulomb yield surface on the octahedral plane

Consider the slice of the Mohr-Coulomb yield surface shown in Figure 4.3, where the mean
stress is zero: Trσ = 0. Repeated deformations may be applied to a single element in order to
cause shear failure, and by recording the returned stresses, the yieldsurface may be mapped out.
The result is shown in Figure 4.3. The test issmall deform21.
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Figure 4.3: Left: The tip of the Mohr-Coulomb yield surface. This surfacehasC = 10,φ = 20◦,
and is smoothed with a smoothing parameter of 1.0. The principal stress axes are shown in
black. The octahedral plane, where the mean stress is zero (Trσ = 0) is represented by the red
line around the yield surface. Right: The expected result is the hexagon,and the MOOSE results
lie on the hexagon as desired. Only the physical sextant (σmax ≥ σmid ≥ σmin) is sampled by
MOOSE.

4.4 The Mohr-Coulomb yield surface on the meridional plane

Consider the two slices of the Mohr-Coulomb yield surface1 that are shown in Figure 4.4. Re-
peated deformations may be applied to a single element in order to cause shearfailure, and by
recording the returned stresses, the yield surface may be mapped out. Figure 4.4 shows the re-
sults on the two meridional planes, indicating that MOOSE’s Mohr-Coulomb yieldfunctions are
coded correctly. The tests aresmall deform23 andsmall deform24.

Looking carefully at the smoothed tip in Figure 4.4, the effect of the ordering of the yield
functions is evident: the lines do not intersect the mean stress axis at precisely 90◦. Nevertheless,
the yield surface is provably convex, and the non-right intersection means that MOOSE will stay
away from the numerically troublesome regions such asσmax = σmid = σmin.

4.5 Hardening of the tensile and compressive strengths

Both the tensile strength and the compressive strength may depend on the internal parameteri1.
Example cubic relationships are shown in Figure 4.5. The tests aresmall deform hard3 and
small deform hard13.

1An unusually large amount of smoothing has been used in this figure: I suggest in real situations the smoothing
parameter be approximatelyC/10.
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Figure 4.4: Left: The tip of the Mohr-Coulomb yield surface. This surfacehasC = 10,φ = 30◦,
and is smoothed with a smoothing parameter of 5.0. The principal stress axes are shown in black
(σmax), dark green (σmid) and light green (σmin). The wedge-shaped region defined by the planes
is the physical region whereσmax ≥ σmid ≥ σmin. The blue plane isσmid = σmin, which is a
Lode angle of−30◦. The red plane isσmax = σmid, which is a Lode angle of 30◦. Right: The
Mohr-Coulomb yield surface on the two meriodonal planes (blue and red).The MOOSE results
are shown as blue and red spots. The axes are mean stress= Trσ/3 and bar stress=

√

si jsi j/2,
wheresi j is the deviatoric part of the stress tensor.

4.6 Hardening of the cohesion and friction angle

Both the cohesion and friction angle may depend on the internal parameteri0. Example cubic re-
lationships are shown in Figure 4.6. The tests aresmall deform hard21 andsmall deform hard22.

4.7 Return to the yield surface from random positions

Random displacements may be applied to a mesh in order to cause failure in the elements, and
the returned stresses may be recorded. The test israndom5. The results are shown in Figure 4.7
where it is clear that MOOSE returns correctly to the yield surface.
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Figure 4.5: Examples of hardening of the tensile and compressive strengths, demonstrating that
MOOSE produces the expected behaviour.
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Figure 4.6: Examples of hardening of the cohesion and friction angle, demonstrating that
MOOSE produces the expected behaviour.
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Figure 4.7: Grey shape: the capped Mohr-Coulomb yield surface withT = 1.5, Tc = 3, C = 1,
φ = 20◦ and smoothing parameter of 0.2. The other parameters areψ = 3◦ and Poisson’s ratio
ν = 0.3. The principal stress axes are shown in black (σmax), dark green (σmid) and light green
(σmin). The plane defined by the red curve hasσmax = σmid (Lode angle of 30◦), and the plane
defined by the blue curve hasσmid = σmin (Lode angle of−30◦. The physical region is the
sextant lying between these curves. Upon randomly deforming a mesh, the stresses in each
element that experiences plastic deformation will lie on the yield surface. Thegreen dots are the
results from 123400 applications of the return-map algorithm. They lie on the yield surface as
desired.
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