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1 Rehbinder’s THM solution

1.1 Introduction

Rehbinder1 derives analytical solutions of cylindrically-symmetric and spherically-symmetric
THM problems in certain limits. The solution is a steady-state THM solution of a pres-
surised and heated cavity of radius rcavity in a finite domain of radius router. In the
cylindrically-symmetric case the cavity is a cylinder of radius rcavity and the domain is
a cylinder of radius router > rcavity. In this document only the cylindrically-symmetric
situation is explored. The cylindrical coordinates are denoted by (r, φ, z).

1.2 Initial and boundary conditions

The initial conditions are zero porepressure, Pf (t = 0) = 0; zero temperature, T (t =
0) = 0; and zero displacement u(t = 0) = 0.

The boundary conditions are at the cavity wall are

Pf (rcavity) = P0 ,

T (rcavity) = T0 ,

σeff
rr (rcavity) = 0 . (1.1)

The latter condition implies the total radial stress is −P0 at the cavity wall, correspond-
ing to the fluid in the cavity pushing on the cavity wall. The boundary conditions at
the outer radius are

Pf (router) = 0 ,

T (router) = 0 , (1.2)

and either σeff
rr (router) = 0 or u(router) = 0. In this document the former is called the

“free outer” boundary condition, while the latter is called the “fixed outer” boundary
condition.

1.3 Simplifying assumptions

In order to derive the solution, Rehbinder makes various simplifications. Translated to
the language of the other PorousFlow documents these are as follows.

1G Rehbinder (1995) “Analytical solutions of stationary coupled thermo-hydro-mechanical solutions”
Int J Rock Mech Min Sci and Geomech Abstr 32, 453–463
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1. There is no gravity.

2. All quantities depend only on the radial coordinate, r, and not the angular coor-
dinate φ or the axial coordinate z.

3. Plane-strain is assumed, so εzz = 0.

4. There is only one fully-saturated fluid phase that contains one component.

5. The fluid relative permeability is unity.

6. The fluid density is constant. In the numerical simulation below, the density is
assumed to obey ρ = ρ0e

Pf/Kf , with ρ0 = 1000 kg.m−3, and Kf = 103 GPa.

7. The fluid dynamic viscosity is constant. In the numerical simulation below, the
dynamic viscosity is ν = 10−3 Pa.s.

8. The Biot coefficient is unity αB = 1.

9. The fluid internal energy is assumed to be linear in the temperature. In the
numerical simulation below, E = CT where C = 1000 J.kg−1.K−1.

10. The fluid enthalpy is assumed to be equal to the fluid internal energy.

11. The velocity of the solid skeleton is zero: vs = 0. To model this using PorousFlow,
the “VolumetricExpansion” Kernels are not included.

12. The rock-matrix density is constant. In the numerical simulation below, the value
ρR = 2500 kg.m3 is chosen.

13. The rock-matrix specific heat capacity is constant. In the numerical simulation
below, the value CR = 1000.J.kg−1.K−1 is chosen.

14. The rock deforms elastically (so there is no plastic heating). In the numerical
simulation below, the Young’s modulus is E = 10 GPa and the Poisson’s ratio is
ν = 0.2.

15. The porosity is constant. In the simulation below φ = 0.1 is chosen.

16. The permeability is constant. In the simulation below k = 10−12 m2 is chosen.

17. The thermal conductivity of the rock-fluid system is constant. In the simulation
below λ = 106 J.s−1.m−1.K−1 is chosen.

18. Steady-state heat flow, fluid-flow and mechanical deformation has been reached
(Rehbinder equation (41)). Using the aove assumptions, this is true if t > ρscsrcavity/λ =
rcavity (the left-hand-side is measured in seconds, the right-hand-side in metres). In
the simulation below, steady-state is achieved by not including any time-derivative
Kernels.
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19. The liquid flow is quasi-stationary, in the sense that the diffusion of heat is much
slower than the diffusion of pore pressure (Rehbinder equation (32)). Using the
above assumptions this may be written as φλµ/Kf � ρscsk where λ is the ther-
mal conductivity of the rock-fluid system, and ρscs = (1 − φ)ρRCR + φρC =
2.35 MJ.K−1.m−3. Using the above values, this condition reads 106 � 2.35× 1010

which is clearly satisfied.

20. The liquid flow is quasi-stationary, in the sense that a pressure change in the
cavity is transmitted instantaneously through the pores to the outer boundary
(Rehbinder equation (33)). Using the above assumptions this may be written as
router − rcavity �

√
kKf/(φν) = 100 m. In the simulation below, rcavity = 0.1 m

and router = 1 m are chosen.

21. The heat is mainly conducted through the matrix, and a negligible part is convected
with the flux. This is true if the Peclet number is very small (Rehbinder equation
(35))

Pe =
ρcαTT0Ek

µλ(1− ν)
� 1 . (1.3)

(Rehbinder writes this in terms of a reference temperature, Tref , which is chosen
here to be T0.) Using the above values this is Pe = 1.25 × 10−5αTT0 � 1. In
the simulation below, αT = 10−6 K−1 and T0 = 1000 K are chosen, yielding Re =
0.0125.

Rehbinder’s derives the solution of this THM problem as an expansion in the Peclet
number. I shall not write the solution here as it is fairly lengthy. The paper contains a
few minor typos and they are corrected in the accompanying thm rehbinder.py script.
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2 Comparison with PorousFlow

The PorousFlow module is designed to simulate THM problems. The output compares
favourably with Rehbinder’s analytical solution, as demonstrated in the figures below.
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Figure 2.1: Comparison between the MOOSE result (squares) and the analytic expres-
sion derived by Rehbinder for the porepressure.
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Figure 2.2: Comparison between the MOOSE result (squares) and the analytic expres-
sion derived by Rehbinder for the temperature.
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Figure 2.3: Comparison between the MOOSE results and the analytic expressions de-
rived by Rehbinder for the radial displacement. Both the fixed and free
outer boundary conditions are shown.
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