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1 Introduction and the yield functions

Tensile, or Rankine, plasticity is designed to simulate a material that fails whenakienum
principal stress exceeds the material’s tensile strength. Its yield functioerefoine

f :O-ma)(*T B (ll)

whereomay is the maximum principal stress (the largest eigenvalue of the stress tensoilj and
is the tensile strength.

One yield function is sufficient because of the definitmpn, < Omig < Omax FOr instance,
if during the return-map process both,iq and omax exceedT the corresponding admissible
configuration is that both of them are equalTto While one yield function is sufficient, it is
convenient to use three yield functions in total:

fo = Omax—T,
fl = Omid — T )

This is the version used Bensi | eSt r essUpdat e. These yield functions have been ordered so
that the smoothing creates a surface that is perpendicular tgthe= omig plane, and that any
trial stress withomig = Omin has an admissible returned stress.

Similar remarks hold for compressive plasticity. It yield functions are

f3 = —Omin—Tc,
fa = —Omida—Tc,
f5 - _Gmax_ TC . (13)

HereT, is the compressive strength, which is positive for real-world materialsyrarsd always
satisfyT. > —T, otherwise there is no admissible region.

Mohr-Coulomb plasticity simulates a material that undergoes shear failureshtea stress
exceeds a linear function of the compressive stress. Its yield functiens a

fe = %(Gmax—omin) + %<0max+ Omin) SiN@—Ccosy,
f7 = %(O'mid — Omin) + %(O'mid"’cmin) sing—Ccosp,
fg = 2(Omax— Omid) + 3(Omax+ Omig) SING— Ccosp,
fo = %(O'mid — Omax) + %(Gmid + Omax) Sin@g—Ccosy,
fio = %(O'min — Omid) + %(Umin+0mid) sing—Ccosp,
fin = %(O'min — Omax) + % Omin + Omax) SINQ— CCOSP . (1.4)

10ften the maximum principal stress is denoteddy;,. The code uses thisymmet ri cEi genval ues method of
RankTwoTensor and this orders the eigenvalues from smallest to greatest.



HereC is the cohesion ang is the friction angle. Once again, the yield functions have been
ordered optimally.

Equations (1.2)} (1.3) and (1.4) define the yield functions of Capped Kohlomb plasticity.

The return-map algorithm first rotatesfrom the physical frame to the principal-stress frame
(whereo = diag(Omin, Omid, Omax))- The rotation matrices used are assumed not to change during
the return-map process: oryhin, Omid ahdomax Change. Therefore, at the end of the return-map
process these rotation matrices may be used to find the final stress in tieapfrgsne.

The 12 yield functions are smoothed using the method encodédi in Par amet er Pl asti ci t yStressUpdat e.
An example is shown Figures 1.1 and 1.2. Figure 1.2 shows slices of the yiéddes at various
values of the mean stress (that is, on various octahedral planes) gamekidigonal-pyramid and
triangular-pyramid nature of the yield surface is evident. The slices taé@nthe tip and the
base highlight: (1) the smoothing; (2) that the smoothing is unsymmetric.

The unsymmetric nature of the yield surface only occurs near the tip aeadgien where the
smoothing mixes the three yield surfaces. For instance, the black line in Aiguisesymmetric,
while the red lines are unsymmetric. The amount of asymmetry is small, but it isnévice
the red curve is not concentric with the remainder of the curves shown imeFig2. The order
of the yield functions in Eqn (1.2), (1.3) and (1.4) have been choserascatihe tip the curves
intersect theomax = Omig line at 90, but not on theomig = Omin line; at the base the curves
intersect thegmig = Omin line at 90, but not on thesmax = Onmig line. The asymmetry does not
affect MOOSE's convergence, and of course it is physically irrgiegsince there is no one
“correct” smoothed yield surface).

Figure 1.1: Left: the unsmoothed yield surface of capped Mohr-Couldagtigity, which is a
hexagonal pyramid, capped with a trianglar pyramid at its tip and base @#kadaot visible in
this picture). Right: a smoothed version. The principal stress directi@nshawn with black
lines, and the mean stress direction is shown with a blue line. In these piCterés ¢ = 30°,
T =0.4, T, = 0.7, and the smoothing solerance i2.0



Figure 1.2: Slices of the unsmoothed and smoothed yield functions at vamatues of mean
stress. The viewer is looking along the line of increasing mean stress inftgeses. Left:

the orange lines show the Mohr-Coulomb hexagon; the black lines showeihig founcated by
the tensile tip; blue lines show the tensile triangle; red lines show the yield suréar the tip.
Right: the similar situation near the compressive base. The whole octapéralis shown in
this figure, but only one sextant is physical, which is indicated by the safidrglines. In this
figurelll represent®max |l representsmig andl represent®min.



2 Flow rules and hardening

The flow potentials for the tensile and compressive parts are associdtilethe flow potentials
for the Mohr-Coulomb parts are nonassociative. The flow potentials are:

g0 = Omax— T,
01 = Omd—T,
02 = Omin—T,
03 = —Omin—Tc,
94 = —Omid—Tc,
05 = —Omax— Ic,
Js = %<0max—0'min) + %(Gmax‘i‘ Omin) Siny —Ccosy
97 = 3(Omid— Omin) + 3 (Omid + Omin) SiNY — Ccosy ,
Os = %(Omax— Omid) + %(O'maX"i‘ Omid) Siny —Ccosy
g9 = %(Omid—omax)—l- %(Omid—chax) sing —Ccosy,
Jio = %(Gmin—omid) + %(Umin‘FO’mid) sing —Ccosy,
011 = %(Gmin — Omax) + %(O'min + Omax) Siny —Ccosy . (2.1)
Herey is the dilation angle.
The flow rules are
o=V (2.2
wheres, = {Omin, Omid, Omax} and
Eap = (;S:Eijklgj; . (2.3)

In this equatiorE;jy is the elasticity tensor.
An assumption that is made Ml ti ParameterPl asticityStressUpdate is thatEy, is
independent of the stress parametgrsind the internal variables. In this case

0%a

= Va2 2.4
anj [ ( )
where\? is the eigenvector corresponding to the eigenvatuef the stress tensor) and there is
no sum oven on the right-hand side. Recall that the eigenvectors are fixed duringttim@+map
process, so the RHS is fixed, meaning tBgf is indeed independent of the stress parameters.

1Special precautions are taken when the eigenvalues are equal, asetestRank TwoTensor .



Also recall that the eigenvectors induce a rotation (to the principal-strasgej, so assuming
thatE;jy is isotropic
Eab = Eaapb - (2.5)

The assumption of isotropy is appropriate for this type of isotropic plasticity.

It is assumed that there are two internal parameters. Note that the defirfitinteimal
parameters is motivated by thought experiments or by real experimentssaseth, the fol-
lowing definitions might not suit your needs. It is a small job to produce a vension of
CappedMbhr Coul onb that incorporates different internal parameters.

The “shear” internal parameteriig while the “tensile” internal parameteriis It is assumed
that

C = C(io),
® = @io) .
W = (i),
T = T(i1),
T = Te(i). (2.6)

The evolution ofig andiy is motivated by first considering a pure shear failure. | would ilike
to be unchanged in pure shear. A pure shear failure implies

0 = f= %(O'max— Omin) + %(Gmax‘F Omin) SiN@—Ccosy,
Omax = omglx_ VsheaEzz(% + %Sinl]J) - YsheaEZO(—% + %Sinl]J) )
Omin = ctr;:ﬁql - VsheaEOO(—% + % siny) — Vsheanz(% + %Sinq-’) . (2.7)

The first equation is the yield function and the other equations are the flea ©ombining the
last 2 equations yields ' '
(Ofnax— o) — (Omax— Omin)

= 2.8
Yshear Exy — Eo ( )
It is assumed that the shear internal parameter evolves according to
o= i8'd + Yshear- (2.9)
Finally, before considering the tensile failure, note that the equations imply
(O-Ez:glx‘i‘ Omﬂ) - (0max+ Omin) — yshear<E22+ EZO) Sinl.lJ . (210)
Now consider a pure tensile failure. The equations to solve are
0 = f=0max—T,
Omax = Gﬁ{gl(— YiensildE22 - (2.11)
The flow rule foramin is Omin = 0Ma! — yiengiidE20 = OMA — yiensiler 2 E22, Wherev is the Poisson’s
ratio. Solving these equations yields
ial ial ial .
Vienslie= Omax— Omax _ (1-v) (Oméax+ Omin) — (Omax+ Omin) (2.12)
Ez2 Ez2



The final expression is used. To motivate this, consider a pure coriyerésifure. The equa-
tions to solve are

0 = f=-0Omn—Tc,
Omin = 0}{{?}1' + YcompressivE=00 - (2.13)
The flow rule forGmax is Omax= OHal + Yeompressiveg 2y Eoo, Wherev is the Poisson’s ratio. Solving
these equations yields

c’trial 0.trial —(o O
Ycompressive= —(1—V)( max "+ m|n)E (Gmaxt Ormin) . (2.14)
00

Note thatycompressive= —Ytensile This means that when these expressions for the plastic mul-
tipliers are used a compressive failure following a tensile failure can dheseensile internal
parameter to reduce, which is physically appealing.

The evolution of the tensile internal parameter is assumed to obey

(otfial 4+ gtMaly _ (G, + Gmin) — Yshear( E22+ E20) Siny

ip=i%r(1-v
1= +(1-v) Exy

(2.15)

The reason for the final term involvinghearis to ensure that no increment of the tensile internal
parameter occurs during pure shear failure — see Egn/(2.10). Howkeeabove definitions
mean that during pure tensile failure, the shear internal parameter wiljehan



3 Technical discussions

3.1 Unknowns and the convergence criterion

The return-map problem involves solving the four equatiohs: 0 (smoothed yield function
should be zero) and the flow equations (2.2). The unknowns are thes3 gtarameters, =
{Omin, Omid, Omax} and the plasticity multipliey. Actually, to make the units consistent the
algorithm usegE,; instead of simply. Convergence is deemed to be achieved when the sum
of squares of the residuals of these 4 equations is less than a useddeferance.

3.2 lterative procedure and initial guesses

A Newton-Raphson process is used, along with a cubic line-searchprbeess may be ini-

tialised with the solution that is correct for perfect plasticity (no harderang)no smoothing, if

the user desires. Smoothing adds nonlinearities, so this initial guess willvagtsabe the exact
answer. For hardening, it is not always advantageous to initialise théeoReéRaphson process
in this way, as the yield surfaces can move dramatically during the returess.oc

3.3 Substepping the strain increments

Because of the difficulties encountered during the Newton-Raphseegsaduring rapidly hard-
ening/softening moduli, it is possible to subdivide the applied strain incre®d&ritto smaller
substeps, and do multiple return-map processes. The final returnfigucation may then be
dependent on the number of substeps. While this is simply illustrating the nqgunamess of
plasticity problems, in my experience it does adversely affect MOOSHikn@ar convergence
as some Residual calculations will take more substeps than other Residutdtians: in effect
this is reducing the accuracy of the Jacobian.

3.4 The consistent tangent operator

MOOSE'’s Jacobian depends on the derivative

Hiju =

(3.1)

The quantityH is called the consistent tangent operator. For pure elasticity it is simply theelas
tensorE, but it is more complicated for plasticity. Note that a sndalj simply changesota,



soH is capturing the change of the returned strés3 (vith respect to a change in the trial stress

(0@, In formulae:
S50 O trial 50

Sotil dey  dofia ™ (3:2)

In the case at hand,

0ij = 5 Ra%Ry; - (3.3)

In this formulagi; is the returned stress, are the returned stress parameters (eigenvalues), and
Ris the rotation matrix, defined through the eigenvectgtga = 1,2, 3) of the trial stress:

Ria:\/? . (3-4)

The three eigenvectors remain unchanged during the return-map rddewever, of course
they change under a changedfi®. The relevant formulae are

ésgial

3ol = W, (3.5)
o2 VORV + W)
trial . (3.6)
60k| bZa Z(Sa - &J)
On the RHS of these equations there is no sum aver
The final piece of information is
0%

@ . (3.7)

Miul ti Paramet er Pl asticityStressUpdat e computes this after each Newton step, for any
aribtrary plasticity model.
The nontrivial part to the consistent tangent operator is therefore

0 ORi4 atrial 6R;—
datrial = z dotrial SaRaJ + Z % R|a6§0”a| Sota Raj + Z R'asa50tnal . (3.8)

All the components of this equation have been provided above.

3.5 Cosserat version

A Cosserat version of capped Mohr-Coulomb plasticity is available. lirags a “host” non-
Cosserat isotropic elasticity tensor exists, and this is employed in the retgrraigarithm.
The unsymmetric parts of the stress tensor and the moment-stress tenséretidendnto the
plasticity theory, so they are unaffected during plastic deformation.
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4 Tests

The test suite consists of many testCappedMbhr Coul onbSt ressUpdat e. This Chapter de-
scribes a few of these.

4.1 The tensile yield surface

Consider the tip of the tensile yield surface shown in Figure 4.1. Repeatedrdgions may
be applied to a single element in order to cause tensile failure, and by iregohe returned
stresses, the yield surface may be mapped out. Figure 4.1 shows that M@odices the
expected result. The tests aml | _def or nb, snmal | _def or n6 andsnal | _def or nv.

Tensile yield surface

0.90 4 = expected (Smin=0)

B MOOSE (Smin=0
m— expected (Smid = Smin)
1T A MOOSE (Smid approx Smin)
m— expected (Smax = Smid)
0.8641 ® MOOSE (Smax = Smid)

0.0 0.2 0.4 0.6 0.8 1.0
S_mid or S_min

Figure 4.1: The tip of the tensile yield surface. This surface has 1 and the smoothing
parameter is 0.5. The principal stress axes are shown in btggk)( dark green §mniq) and
light green 6min). The wedge-shaped region defined by the planes is the physicah reb&re
Omax>> Omid = Omin. The blue plane ismig = Omin, Which is a Lode angle 6f30°. The red plane
IS Omax = Omig» Which is a Lode angle of 30 The black curve hasmi, = 0. The right figure
shows plots of the yield surface along these curves (with the same colmmeg demonstrating
that MOOSE produces the expected result. There is a tiny discrepaney/btu 6mig = Omin)
result: this is because the deformations applied in the test only producepfaxapate result
Omid &~ Omin, SO the MOOSE results don't lie exactly on the blue plane, but slightly off it.
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4.2 The compressive yield surface

Consider the tip of the compressive yield surface shown in Figure 4.2edReg deformations
may be applied to a single element in order to cause compressive failurby aadording the
returned stresses, the yield surface may be mapped out. Figure 4.2tehodMOOSE produces
the expected result. The tests anal | _def or L5, smal | _def or ml6 andsmal | _def or ni7.

Compressive yield surface

—1.000

—0.975 1

—0.950 1

—0.925 4

in

—0.900 1

Sm

—0.8751
— expected (Smax=0)
-0.850{ M MOOSE (Smax=0)

m— expected (Smax = Smid)
—0.8251 A MOOSE (Smax approx Smid)
m— expected (Smid = Smin)
-0.8004{ ® MOOSE (Smid = Smin)

0.0 -0.2 -0.4 -0.6 -0.8 -1.0
Smid or Smax

Figure 4.2: The tip of the compressive yield surface (this view has opparsitetation to Fig-
ure'4.2). This surface hag = 1 and the smoothing parameter is 0.5. The wedge-shaped re-
gion defined by the planes is the physical region wleg > Omid > Omin- The blue plane is
Omid = Omin, Which is a Lode angle of 30°. The red plane ismax= Omid, Which is a Lode angle

of 30°. The black curve hasmax = 0. The right figure shows plots of the yield surface along
these curves (with the same colour scheme) demonstrating that MOOSE@sdtia expected
result. There is a tiny discrepancy in the reg,{x = Omiq) result: this is because the deforma-
tions applied in the test only produce the approximate regit ~ Omiq, SO the MOOSE results
don't lie exactly on the blue plane, but slightly off it.

4.3 The Mohr-Coulomb yield surface on the octahedral plane

Consider the slice of the Mohr-Coulomb yield surface shown in Figure 4n&revthe mean
stress is zero: 16 = 0. Repeated deformations may be applied to a single element in order to
cause shear failure, and by recording the returned stresses, thewjiklde may be mapped out.
The result is shown in Figure 4.3. The tessiml | _def or m21.
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Mohr-Coulomb yield surface on octahedral plane
10

—104 —— expected

= MOOSE

T T T T T
-10 =5 0 5 10

Figure 4.3: Left: The tip of the Mohr-Coulomb yield surface. This surtaasC = 10,¢p= 20°,
and is smoothed with a smoothing parameter of 1.0. The principal stress raxssoavn in
black. The octahedral plane, where the mean stress is zepo{T) is represented by the red
line around the yield surface. Right: The expected result is the hexagdihe MOOSE results
lie on the hexagon as desired. Only the physical sex@ptx(> Omid > Omin) IS Sampled by
MOOSE.

4.4 The Mohr-Coulomb yield surface on the meridional plane

Consider the two slices of the Mohr-Coulomb yield surfattet are shown in Figufe 4.4. Re-
peated deformations may be applied to a single element in order to causéaslneayr and by
recording the returned stresses, the yield surface may be mapped aure| £ig shows the re-
sults on the two meridional planes, indicating that MOOSE’s Mohr-Coulomb fiiictions are
coded correctly. The tests asgnl | _def or n23 andsmal | _def or n24.

Looking carefully at the smoothed tip in Figure 4.4, the effect of the ordesinthe yield
functions is evident: the lines do not intersect the mean stress axis aghy&tls Nevertheless,
the yield surface is provably convex, and the non-right intersection steabMOOSE will stay
away from the numerically troublesome regions sucti&s = Omid = Omin-

4.5 Hardening of the tensile and compressive strengths

Both the tensile strength and the compressive strength may depend on thalipggameter;.
Example cubic relationships are shown in Figure 4.5. The testsnaté _def or mhar d3 and
smal | _def or mhar d13.

1An unusually large amount of smoothing has been used in this figuregestiin real situations the smoothing
parameter be approximateBy/ 10.
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Mohr-Coulomb yield surface on meridional plane

—— expected
= MOOSE, Lode=30deg
—— expected
* MOOSE, Lode=-30deg

bar stress
w

T T T T T
4 6 8 10 12
mean stress

Figure 4.4: Left: The tip of the Mohr-Coulomb yield surface. This surtaasC = 10,¢p= 30°,

and is smoothed with a smoothing parameter of 5.0. The principal stressrexs®an in black
(omax), dark greendmig) and light greendin). The wedge-shaped region defined by the planes
is the physical region wher@max > Omid > Omin- The blue plane i©mig = Omin, Which is a
Lode angle of-30°. The red plane i®max = Omig, Which is a Lode angle of 30 Right: The
Mohr-Coulomb yield surface on the two meriodonal planes (blue and Té&) MOOSE results
are shown as blue and red spots. The axes are mean=stigss/ 3 and bar stress /sjsj/2,
wheres;; is the deviatoric part of the stress tensor.

4.6 Hardening of the cohesion and friction angle

Both the cohesion and friction angle may depend on the internal paragmefsample cubic re-
lationships are shown in Figure 4.6. The testssaed | _def or mhar d21 andsnal | _def or mhar d22.

4.7 Return to the yield surface from random positions

Random displacements may be applied to a mesh in order to cause failure inntleatsleand
the returned stresses may be recorded. The teahi®onb. The results are shown in Figure 4.7
where it is clear that MOOSE returns correctly to the yield surface.
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Tensile and compressive strengths with softening

1.0 = expected, tensile
A MOOSE, tensile
== expected, compressive

0.9 ® MOOSE, compressive
.08
=]
=
c
S
a

0.7

0.6

0.5 A

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
internal parameter le-5

Figure 4.5: Examples of hardening of the tensile and compressive stsedgthonstrating that
MOOSE produces the expected behaviour.

Cohesion hardening Friction-angle hardening
201
0.50
18 0.45
16 o 040
5 g
$ £035
£ 5
8 3
© 144 2
“ 030
124 0.25
= expected 0.20 — expected
10 A MOOSE A MOOSE
0 1 2 3 4 5 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
internal parameter le-6 internal parameter le-6

Figure 4.6: Examples of hardening of the cohesion and friction angle, m&rating that
MOOSE produces the expected behaviour.
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Figure 4.7: Grey shape: the capped Mohr-Coulomb yield surfacemithl.5, T. = 3,C =1,
¢@= 20° and smoothing parameter of 0.2. The other parameteny ar&° and Poisson’s ratio
v = 0.3. The principal stress axes are shown in blamkaf), dark greendmig) and light green
(Omin)- The plane defined by the red curve ltggx = Omig (Lode angle of 30), and the plane
defined by the blue curve hagng = omin (Lode angle of—30°. The physical region is the
sextant lying between these curves. Upon randomly deforming a meshtrésses in each
element that experiences plastic deformation will lie on the yield surfacegiges dots are the
results from 123400 applications of the return-map algorithm. They lie onithe surface as
desired.
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